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Purpose: Maticing the fast growing translation of artificial intelligence (Al technologies to medical image
analysis this paper emphasizes the future role of the medical physicist in this evolving field. Specific challenzes
are addressed when implementing big data concepts with high-throughput image data processing like radiomics
and machine learning in a radiconcology environment to suppaort clinical decisions.

Methods: Based on the experience of our interdisciplinary radiomies working group, techniques for processing
minahble data, extracting radiomics features and associating this information with clinical, physical and biolo-
rical data for the development of prediction models are described. A special emphasis was placed on the po-
tential clinical significance of such an approach.

Resuls: Clinical studies demonstrate the role of radiomics enalyzis as an additional independent source of in-
formation with the potentizl to influence the radiooncology practice, i.e. to predict patient prognosis, treatment
response and underlying genetic changes. Extending the radiomics approach to integrate imaging, clinicel, ge-
netic and dosimetric data ('panomics') challenges the medical physicist as member of the radiconcology team.
Conclusions: The new feld of big data processing in radiconcology offers oppontunities to support clinical de-
cisions, to improve predicting treatment outcome and to stimulate fundamental research on radiation response
both of tumor and normal tissue. The integration of physical data (e.g. treatment planning, dosimetric, image
guidance datay demands an invelvement of the medical physicist in the radiomics approach of radiconcolozy. To
cope with this challenge national and international organizations for medical physics should organize more
training opportunities in antificial intelligence technologies in radiconcolozy.

1. Introduction

Evolution of radiconcology towards an individvaliced patient
treatment appreach benefitted  strongly from  the inereasing  im-
plementation of imaging technolegy in the radiotherapy process. From
the beginning, medical physicists initiated and significantly contributed
to this development. Aiming Lo integrate patient imaging in all phases
of radiotherapy, medical physicists ook over responsibilities in brid-
ging over informalics and compuler science with radiooncology. In this
rale, medical physicizts were challenged to look more and more beyond
the borders of their domaing in dosimetey, treatment planning and
delivery, quality assurance and radiation protection. In the attempl Lo

optimize the treatment for each individual patient, yel long before the
flag of personalized medicine was raised, medical physicists contribuoled
mast significantly by incorporating individual patient image dala into
the treatment process. Two major breakibroughs in this developmendt
can be identified so far: (i) CT-based trealment planning and (i) image
guided radiation therapy (IGRT) [1].

Follewing the adjustment of analomical cross sections from slan-
dard atlases, shertly after the invention of compuler tomagraphy (CT)
with its revolutionary role in radiology, the first step in the in-
dividualization of radictherapy was the introduction of CT-based
treatment planoing [2]. Meanwhile, CT-based treatment planning has
expanded  towards muoltimodality-based

treatment  planning Dby
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integrating other imaging modalilies, such as Magnetic Resonance
Imaging (MRI) and/or Pesitron Emission Temography (PET), aiming to
further improve the definition of targel volumes and critical organs [3].

Anather breakthrough in the integration of imaging into the
radiotherapy process was Lthe image control of the treatment delivery at
the treatment unit, known as IGRT [1]. From the beginning with the
verification of the patent sel-up on the treatment couch with film, up o
the most recent lechnology of combined MBE-linac systems, medical
physicisls were increasingly driving the inlegration of imaging into
radiotherapy [4].

Mow, we are facing a fascinating new field, so0 1o say as the third
breakthrough, where however medical physicists are nol widely en-
waged yvel, bul certainly have o find their role in the fulure: quantita-
tive image analysis or in short “radiomics™ [5,6]. Radiomics can be
considered a two-step process with (1) extraction of relevant static and
dynamic imaging fealures, and (2} incorporating these fealures into a
mathematical model Lo predict reatment ouleome as discussed in the
follewing subsections [7]. Radiomics is designed (o assist the radio-
oncolegist in the decision on the individual treatment of a patient, and
Lo assess prediction and prognosis of the disease.

In institwtiens dealing with radiomics technigues, it is most im-
partant o eslablish an interdisciplinary team where medical physicists
interact closely with clinicians, computer scientists and biologists.
Applying quaniilative image aoalysis combined with specific radio-
therapy dala as an individual radiooneomics signature for each treated
patient requires fundamental knowledge of Al lechnigues, big data
processing, medical imaging analysis methods, and the clinical and
molecular bielogical basics relevant for performing radiemics and
radiogenemics sludies.

Mainly from the medical physicists view, this review addresses four
guestions: what radiomics is aboul, what are the methods used, what is
the impact expected for radiconcolegy, and what is the particular
challenge 1o medical physicisis.

2. Kadiomics in radiconcology — goals and workilow

Radiomics is a higher erder data-driven concept, which initially has
been used in radiology 1o support the detection of abnormal findings in
the large sels of CT dala. Due W modern computer technology in con-
junction with efficient data mining, it became possilble 1o extract large
amounts of imaging features which assoclated with medical, biolegical
and physical information may be clinically celevant, for instance for
prediction of treatment outecome [8-107. The previous mainly qualila-
tive interprelation of images 8 new complemented by guantilative
image analysis based on lechnigues of artificial intelligence (AL, in-
cluding ML technigues such as deep learning (DL).

Expanding the radipmics concept o include molecular biology dala
(e, genemic, proteomic, metabolomic), alse designaled “radio-
genomics”, has broken new ground o generally characterize diseases,
identify genetic variations and 1o predict trealment response by eval-
valing mullidimensional imaging feature signalures. Translation of
radiomics o radiooncoelogy has been investigated with encouraging
resulls over the recent years. An interesting aspect has been emphasized
by authors from the QUANTEC group (Quantitalive Analyses of Normal
Tissue Effects in the Clinic) expecting more valid predicters for clinical
putcome when combining traditional dese-volume guantities, en-
dogenous biological biomarkers and radiomics fealures [11-137. As
propesed recently, an even more comprehensive eollection of input
data for radiconcolegy information analysis may be considered [11,14].
Such a “pan-omics” or “radio-oncomics™ concepl may for instance in-
tegrate all diagnostic and treatment data, specifically realment plan-
ning images, image based 30-/4D dose distribulion, trealmenl ver-
ification and image-guidance dala.

To implement the radicomics concepl in radiooncology, it is re-
commended lo establish a special interdisciplinary working group,
which covers the related clinical, biological, physical, mathematical
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Fig. 1. Workflow of the radiomics concept in radiconcology.

and most imporlantly computer science skills. In order to assure an
effeclive interaction and critical evaluation of the resulls, all members
of such a group should at least have some fundamental knowledge on
each mulval field of experiise. A typical radiomics workflow in clinical
praclice comprises the dala acquisition, data processing and elinical
lesting of radiomics signature (Fig. 1)

3. Radiomics concepts and methods
3.1, Imaoge acquisition, reconstruction, segimentation

Different modalities (CT, MRI, PET) bave been explored as a po-
lential basis foc radiomics, where the choice of modality mostly hinges
on the region of interest. In lung as well as head and neck cancer for
example, CT (and PET) scans are considered standard of care, and most
studies in these areas therefore forus on these modalities [15,16]. In
eliomas on Lthe other hand, MRI is dominantly vsed. A challenge in MR-
lased radiomics remains that the typically oltained analomic MR
images rely on visual interpretation of lissue contrast resulting from
experimental pulse sequence parameters, and do nol directly measure
the underlying lissue propercties. Recenl advances in the feld of quan-
titalive ME imaging however have enalled o directly quantify prop-
erties like T1 and T2 relaxation times [17]. In addition, extending MR
imaging beyond pure visualizatien of anatomy has further benefitted
the field of radiomics. By visualizing key oncogenic features, such as
angiogenesis or hypoxia, MR sequences, like diffusion or perfusion
imaging, caplure encogenic processes and make them available for
radiomics. In parallel, post-processing Lechnigues have matured Lo a
point where derived meirics, such as cerebral blood volume (from
pedfusion imaging) and Llensor indices (from diffusion imaging) can be
reliably assessed [18,19].

For most modalilies and diseases, (semi-Jautomatic segmentation
algorithms have been developed o supersede the lme-consuming and
often unreliable precess of manual sepmentalion, as segmentalion
quality is eritical for the subsequent analyses. In many fields, challenges
have been designed o compare and benchmark these algorithms
againsl each other, such as the Liver Tumor Segmentation Challenge
(hupes Soww lits-challenge.com) or the Brain Tumor Segpmentalion
Challenge (hitp://braintumorsegmentation.org). Furthermore, such a
central evaluation of algorithms enables the synthesis of “meta-algo-
rithms”, which consider and weigh segmentation information frem
multiple algorithms o synthesize a substantially improved final seg-
menlation. Such approaches may encompass simple strategies, such as
majorily voting or more complex algorithms such as S5TAPLE
{(Simultaneous truth and pecformance level estimation) [20,21].
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3.2 Rodiomic feature extroction

Afler image acquisition and sepmentation, typically a set of image
deseriptors is calculaled within the segmented volume of inlerest,
which i then forwarded as input for ML models. Traditienally, simple
intensity statistics (such as mean or standard deviation) or histogram
parameters like kuriosis, shewness or eotropy are used o characlerize
segmented regions of inlerest [22]. While these measures are straight-
forward to implement and computationally inexpensive, they are ne-
wlecling spalial information and are partially sensitive o nocmalization.
For these reasons, modern radiomic approaches wsually rely on more
sophisticated image descriptors.

Image filters may be used 1o emphasice characteristics found in
images, and can for example highlight edges. Typical examples of such
filters include a median, Sobel or Scharr filter, which perform a fillering
operation within a defined nxn neighborbood. Approaches that are
more complex combine several filtecs, like the Laplacian of Gaussians
(Loa), where first the image is smoothened using a Gaussian kernel and
the Laplacian is calculated on the resulling image, highlighting regions
of rapid intensity change.

Texture descriptors conceptoally advance the above-mentioned
metrics by incorparating spatial information. In the 19705, Haralick
el al. postulated a group of metrics caleulated from a gray-level co-
occurrence malrix 1o be used as image deseripiors [23]. Haralick lex-
ture Features are sUllin goed use today, although they are also partially
sensitive (o normalizalion and are nol (fully) rotationally invarianl. To
overcome these limitalions, several strategies, soch as wavelets or
space-frequency representations bave been proposed. Another ap-
proach are three-dimensional extensions of popular modern lexture
features, such as Local Binary Patterns (LEP) [24]. These lexture de-
scriptors overcome many of the aforementioned limilations, as they are
ratationally invariant, insensitive 1o normalization and encode spatial
information. However, these featores are compulationally expensive,
and wsvally require elaborale posl-processing stralegies Lo generale
meaningful image region deseriptors. Nonetheless, the advantages of
these texlure features are leading to their more widespread use today.

Given the pepularity of DL (see below), unsupervised learning
metheds have also been vsed o generate texture descriplors. A pro-
minent example is the Aute-Encoder, an unsupervised deep neural
network. Using a stacked archilecture of convolutional, activation and
pooling layers, the inpul image is reduced to a fealure vector, Next, the
decoder parl maps the fealure vector back to the inpul image space. The
filters in the convolulional layers of the aute-encoder architeclure are
learned through backpropagation of the reconstruction error, defined
between the original image and the reconstructed image.

Besides features derived from intensities, shape fealures are com-
monly used in radiemics. Given a proper inputl segmenlation, de-
scriptors of shape, such as sphericity or surface-volume-ratia, can be
casily computed from 2D and 3D images. Given thal shape features
encede information complementary o intensily information, both fea-
ture calegpories are usually used in parallel. To facilitate their use,
several open source packages implementing shape features are avail-
able, with FPyRadiomics Dbeing one popular example  Chiipess
pyradiomics readthedocs.in} [25]. Multiple publications have dis-
cussed the influence of different radiomic software implementations on
numerical feature values [6,26]. To harmonize the use of radicmics, the
image biomarker standardization initiative (IBS0) created a dictionary
of standardized mathematical definitiens of radiomics fealures [27].
Despite this harmonization of mathematical equations the soflware
implementation ilself appears 1o have large impacl on numerical fea-
ture values and thus the prognostic relevance of radiemic fealures [26].
To compensale this, Lambin et al. proposed a comprehensive reporting
system for radiomic stodies with the aim 1o facilitate reproduocibility
[6]. A digilal phantem was published online that can be used as a basis
to calculate numerical feature values with the respective radiemic
soflware. Integrating this data into scientific publications would
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improve comparabilily for other researchers.
3.3 Prediction models — the need for machine lvarning

ML has increasingly been established as one of the most essential
tools in molecolar biology ever since its breakthrough in protein
struciure prediction [28]. ML is one of many lerms describing algo-
rithms that learn from and make predictions on data. With the explo-
sion of data, this technology has now evolved as the major solution for
problems from playing games like Go and chess o improving the in-
leraction between vser and operating systems. Mostly used are methods
referred o as Artiffciel Mewrol Networds (CANN; originally meant Lo
madel brain funclions), Rendom Forests (RF), or Support Vector Mochines
{(5VM} [29-31]. These and others have been applied 1o problems in
radiomics [32-35]. The latest breakthroughs are made available
through very powerful computing units (so called GPUs) in combina-
lion with massive amounts of data. These ace referred 1o as DL methoeds
(e.g. Deep Comvolutional Neural Networks, CNN, or restricted Bollzmann
machines). They have succeeded in voice and image recognition, and
have recently also intruded inte classification and segmentation Lasks
relevant to radiomics [36,37]. Furthermore, they have been demon-
strated to boost the performance in protein struclure prediclien [38].
The deep CHNs can learn manifold more complex relations between
inpul (eg image) and output (eg. diagnosis or classificalion) than
tradilional ANNs. Of note, these techniques do not requice the input of
pre-caleulated image features as deseribed above, but rather learn these
fealures “on the go®, as usually whoele image volumes are fed into these
madels. The main difference betweren convolutional layvers and fully-
connected layers is that convolutional layers treat the spatial structure
(e.g. 1D, 2D, or 30) of their input in a very specific way. In addition Lo
the spatial dimensions, the data also bas channels (ie. voxelwise fea-
tures). There is one property of input data and two propecties of the
desired inpul-outpul mapping which characterize the appropriaie use of
a convolutional layer: A convolutional layer provides so-called spatiel
shift-wquivirionee (e, if the inpul is shifted in space then the oulput is
shifted in the same way) and spatiol locality (i an outpul pixel is in-
Muenced enly by input pixel values that are nol far away in space) of
featlure extraction for se-called regulor-grid dote (i.e. data with a uniform
spatial neighborhood structure). These properties are implemented in
convolutional layers in the following specific way. Convolutional layers
train filters which pecform a “multi-channel version” of discrele con-
volution. These fillers can be understiood o be small fully-conneeled
layers themselves that operale equally on each loeal image patch. For
example, one such filler might lake a 5 = 5 pixel patch (all its channels)
as the inpul and produce one cutput pixel (one filler for preducing each
culpul channel). The filter slides over the whole image producing the
culpul values arranged in space. Since the same filler is applied Lo all
patches of the image, useful low-level features [eg. image inlensily
patterns) in early network layers, or complex features (e.g. tumors) in
deep network layers {(composed from the detected low-level features
from previous layers) can be detecled regardless of their location.
Multiple such filters can be trained Lo recogniee several different types
of low-level structores and their oulpuls combined in the next layer.

Besides the supervised learning algorithms mentioned above, there
are also unsupervised algorithms. Unsupervised means that they are
applied e unlabeled data, ie. the patients are not calegorized in any
way. Such algorithms try to find recurring patterns in the feature space
and clusier the observations (patienis) by similarity. The resulling
grodps could then be analyzed for common trails, eg duration or
chance of survival.

3.4, Challenges of ML

The price 1o pay is that they requoire manifold more what the ML
ficld refers 1o as labeled data, namely examples for which the correct
map from inpul 1o outputl is known. So, o really profit from the power
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of deep CHNs in molecular and medical biology, larger amounts of data
are needed, and in particular labeled data.

Modern image analysis pipelines can easily yield a large number of
image fealures, readily appreaching the complexily seen in gencmics
[25]. Such amounls cannot be processed and interpreted by hand. Thus,
computer-assisted methods like ML are crucial to fully vtilize all the
availaldle data.

Due o Lthe complexity of the prablems thal il ries Lo solve, ML often
riequires substantial experlise. The major challenge lies in the simple
reality that ML extracls the Lrue map belween input and outpul cor-
reeclly if and only if the dala has been prepared adeguately. What works
in many fields in which ML has been succeeding oflen fails in biology
[39,40]. To over-slale the problem in a paradox: you need to fully
understand your data before you can blindly apply ML to understanding
il. Failing to undersiand the data will produce wrong models. In the
best case, performance will be dismal. As long as the user 15 aware of
that problem it might not be one. One example often cansing praoblems
in radiomics are unbalanced dala sets in which one outeome (or class) is
strongly over-represented (eog. most patients die or disappear, for very
few healing is consistently tracked over long periods). If nol properly
accounted for, such an imbalance will induce a strong bias in the de-
cision process loward the class which is over-represented in the training
sel. Over- or under-sampling some of the classes might correct for some
of the imbalance.

3.5 The need for featere reduction

Arguably worse than not oblaining an impressive performance is
when developers over-estimate perfermance. Typically, this happens
because the ML over-fits the known data: an extremely common trap.
One reason could lie in redondant data. Having hundreds or thousands
of features might not help if there are only few samples (patienis) o
train on. To avoid over-filling, models typically need more samples
(palients) than free parameters (features). Altheugh the exact number
depends on the variance in the dataset, a role-of-thumlb is (o have at
least ten times more samples than free parameters. Selecting the most
predictive fealures might become crucial wo reduce the free paramelers
and eliminale redundant or not informative fealures. bMultiple strategics
for dimensionality reduction of the feature vector have been proposed,
though exploring all of them would go beyond the scope of this work
(see Parmar el al. or Leger el al. for a more detailed analysis [32.34]).
Intra class correlation (ICC) tests the reproducibility of fealures by
comparing annaolations from multiple operators (physicians) and re-
moves inslable fealures. However, this increases the workload sinee al
least parts of the data sel must e annetated several times. Other
metheds, like minimum redundancy maximum relevance {mBRMR], oy
to reduce the feature space by removing inter-correlated features while
retaining those highly correlated with the endpoint. Thus, noisy fea-
tures (low correlation with the endpoint) are eliminated and the fealure
space is further reduced by only keeping a single feature oul of every
group of correlated features. Finally, some methods simply sample part
of the feature space (forward or backward selection, hill climbing, ge-
nelic algorithms) and compare the overall performance of those sub-
spaces until a stop criterion is fulfilled, eg. the improvement is less than
a certain threshold. However, any endpeint-specific feature selection,
i.e. whose method takes the endpeint into account, must never be ap-
plied o ithe whole daia sel, bul for example within cross-validation.
Otherwise, the selected fealures and the fAinal model can be heavily
biased. On the other hand, one advantage of some modern ML alpo-
rithms (e.g. RF) is their ability (o analyze a high-dimensional data set
withoul prior selection of “candidate fealures®, by automalically
weighing each feature, and hence leverage the full information con-
tained in the dala sel
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3.6, Validotion of ML models

ML madels must be rigerously validated. A medels predictive per-
formance sheuld never be evalualed on the same data en which it was
develeped. Testing the model on ancther cehort, ideally one that be-
came available after the method development, would be preferable, but
is not always an option. If an external validation cohorl is unavailable,
the easiest golulion is 1o first split the data inlo two parts (e.g. 70% and
30%), Lrain on the first part, and test on the second. However, if the
data set is already quite small (less than 100 palients), splitting it in this
way further propagates the problem of insufficient training and Lest
data. Three common solulions e this approach are cross-validation,
leave-one-cul, and boolstrapping [41].

In k-fold cross-validation the data is randomly split inlo k parts
(folds) of equal size. All but one of those folds is then used (o train the
madel and the last fold to test ils performance. This is repeated k Lmes,
each time changing which folds are used o train and validate, until the
madel has been validated on each fold exactly ence. Thus, the final
pecformance estimate includes all data points instead of only a certain
percentage. IF the ML model includes hyperparameters, these muost be
ceptimized on the training data I'JIﬂ!." To avoid overfitling nested cross-
validalion should be applied, ic
parts and each part is vsed for parameter oplimization once. Leave-on-
oul, or jackknife, is a special case of cross-validation in which the
number of folds is equal o the nimber of data points. Thus, during each
iteration the model is trained on all bul one data point and validated on
the one left oul

Bootstrapping arlificially increases the amount of data by creating
new data sets of equal size randomly sampled from the original one. As
the sampling includes replacement, some data points can be included in
the new data sels multiple tmes while others are left out. The model is
then trained on those data seis and validated on the dala poinis not
included in the random sample. This process can be repeated an arbi-
trary amount of tirmes (often 100-1000 times) yvielding a distribotion 1o
estimale confidence intervals of the true performance. If retraining the

. the training dala is again splil inlo

madel is too computationally expensive Lo repeat il hundreds of Limes,
predicling the data enly once (eg. cross-validation) and resampling the
predicied data can also help to generate confidence intervals.

4, Impact of radiomics on radiconcology

4.1, The poteritial and lmits — predicdng individeal patient risks and
reabment oube ormes

Besides the technical details of the radiomics workflow described
above, the clinical endpoint is fundamental to generate meaningful
results. Generally, radiomics has been for prognostic assessment of
patient outcome and prediclion of therapy response.

Many studies have applied radiomics to generate models predicling
patienis’ survival. A complex endpoint as survival, however, does not
anly depend on lumor properties, bul 1o a greal exlenl on palient-
specific details, such as age, gender or performance index [42]. A
radipmics classifier always needs to be compared (o such known ex-
isling prognostic factors Lo prove its incremental value. For oplimal
madel performance, a combination of radiomics and clinical factors
may be necessary as described below. For a beller estimation of the
value of twmor-specific radiomic signatures, the disease-specific sur-
vival may be a more accurale endpoint. Disease-specific survival end-
points were successfully applied for several entities such as glioma or
colorectal carcinoma [43,44]. Further prognostic endpoinls inclode
local and systemic progression free survival guantifying the individual
risk of recurrence. Both could be directly translated inte clinical
adaption of therapy regiments by escalation of local or systemic therapy
madalilies.

Finding an appropriate endpoint o assess therapy response con-
stitutes a more challenging task. Some studies have chosen post-
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therapeutic well-proven prognestic factors, such as the pathologic
campele response in reclal cancer [45]. However, for other malignant
entilies, as shown for safl Ussue sarcomas, the same endpoinl may not
be adequate [46]. Alternatively, the radiemics classifier itself could be
generated post-therapeotically and used for predictive assessment
[26.47]. Aparl from absolute radiomics fealures, “delia radiomics™ re-
presenting the absolule or relative change of features can be caleulated
guantifying the therapy-dependent changes of fealures [48]. Aller-
natively, the concepl of “radiogenomics”, correlating radiomics with
underlying genetic changes, could be applied to monitor therapy re-
sponse by delermining the expression of the oncogenes targeted by a
given drug.

I first studies, radiomic analyses were performed on the basis of CT
data. For patienis with Non Small Cell Lung Cancer (NSCLC), multiple
large relrospective Lrials demonstrated the prognostic potential of CT-
based radiomic classifier predicting survival and systemic progression
afler radiotherapy (RT) [16,49]. A recent study demonstrated the fea-
sibility of the radiegenomics concepl by predicting the clinically re-
levant EGFR and KRAS mutational status with high accuracy, especially
when combined with clinical information [50].

Multiple studies have investigated the value of radiemics in PET-
imaging [51]. 18-Fluordeoxyglucose (FDG)}-PET/CT was subjected Lo
radiomic analysis showing prediclive capabililies for survival, disease
progression and pathoelogical trealment response for mulliple entilies
including esophageal cancer, NSCLC and head and neck cancers
[52-54]. Besides FDG, amino acid-based PET imaging plays an in-
creasing role in daily clinical practice. Textural features of 18F-flucro-
ethyl-l-yrosing (FET)-PET outperformed standard measures differ-
entiating WHO grade Il and grade 1Y gliomas, and predicling overall
survival (05) and progression free survival (PFS) [55].

MNowadays, MRI plays a key role for diagnosis, follow-up and
treatmenl planning for many malignancies. Funclional imaging, such as
diffusion- or perfusion-weighted sequences has greatly enhanced clin-
ical applications. Radiomics has the polential 1o advance MRI analysis
one slep further. Exemplarily, for prosiate carcinoma patients, MEI-
based radiomics may Dbe used for Gleason score determination and
distinction of carcinoma from benign Ussoe as an allernative o invasive
biopsies [56,57].

In patients with Glioblastoma Muoltiforme (GBM), MEBI-based fea-
tures were shown Lo predict 08 and PFS [58-64]. Notably, radiomics-
based progonostic models inherit an additional valoe beyvond clinical,
molecular and standard as well as functional imaging parameters
[42.65]. Further on, multiple studies demonstrated significant corre-
latiens with distinct gene expression profiles [63,66]. In particular,
imaging features significantly correlated with prognoestic relevanl mo-
lecular GBM subgroups [S8]. For instance, simple volumelric measures
of GBM compartments such as the volume ratio of T2 hyperiniensily Lo
contrast enhancement and central neerosis showed significant predic-
ticn of the prognoestic relevant mesenchymal GBM subtype with an AUC
of 092 [67]. In a distinet study, the feature minimom histogram in-
tensity of GBM Edema was correlated with the mesenchymal GBM
subgroups. The group was alse able to link guantilative imaging fea-
tures Lo driver-gene dependent transeriptional programs [63]. Mula-
tional stalus of encegencs were predicted by radiemics fealures, too
[68]). Promoler methylation of O(6)-methylguanine-DNA - methyl-
transferase (MGMT) constitule a favorable prognostic factor for patients
receiving lemozolomide-based chemotherapy [69]. A recently pub-
lished mulliparametric MRI-based radiomic signature achieved an ac-
curacy of 80% in predicting MGMT promater methylation slatus in an
independent validation cohort [70]. At the same time, histegram and
textural features of moltiparametric MED enabled an aulomatized
grading system for pliomas differentiating WHO grades -1V with an
accuracy of 0.961 [71]. Aparl from these feature extraclion-based
models, DL techoigues, such as CNNs supplied with sufficiently large
patient coboris, may improve pecformance in the fulure. First studies
showed promising resulls with an accuracy of up te 0899 in
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differentiating short and long time survival obtained in a cross-valida-
lion coborl [36,72].

Despile radiomics” great potential, novel classifiers need o prove
their clinical usefulness by means of statistical calibration, discrimina-
tion and finally validation in independent patient cohorts. In addition,
radiomic models should inheril an incremental value above existing
madels. Exemplarily, simple clinical paramelers outweighed diffusion-
and perfusion-derived MERI parametlers for survival prediction in GEM
patients making its clinical application unnecessary [73]. On the other
hand, several stodies underlined that the combination of radiomics
signatures with clinical, molecular and established imaging parameters
yielded the highest medel performances [42,50,65].

4.2, Enhancing efficiency by tumor habitat torgeting — the rediomic torget
volurne

Independently of risk prediclion, largel volume definilion may be
significantly enhanced by guantilative imaging information during in-
itial treatment planning. Today, volumes are defined based on CT, MEI
and/or additional functional imaging information such as PET. By in-
cluding information extracted from radiemics analyses, subvolumes
might be identified, that require higher (or lower) doses. This may
enable sophisticated dose painling largeting a “radiomic larget volume”
{(RTV) [74,75].

[n conlrast o manoal segmentation, quantitative imaging features
al the basis of (semi-} automalic segmentalion may help 1o reduce in-
lerpersenal variability. In head and neck cancer patients, the principle
was Lested by training a decision tree-based K nearest neighbor classi-
fier using multimodal PET/CT texture- and intensity-fealures. Each
voxel was either classified as normal or abnormal yielding a high seg-
meniation accuracy compared 0 experl contours from expert physi-
cians [76]. Another group used a quantilalive feature profile for tumor
identification and automalic segmenlation in prostate carcinoma pa-
tients. Further on, they followed the above-mentioned concept gen-
eraling a focal boost to the RTY. The resulling dose distributions
achieved a redvoced dose o organs al risk demonstrating a potential
benefit by applying radiomics-guided target definition [57]. For the
segmenlatien of GBM, mulliple supervised and unsupervised automated
methods were developed such as the random forest classifiec-based
BraTumlA software [77,78]. Such software implementation achieved
high consistencies with maonudal experl segmentation with diee simi-
larily score (DSC) of up Lo 86% [79]. Moreover, there are angoing ef-
forts to train supervised neural networks for image segmentation in
academics and industry [80]. A CWNN-based approach yielded a high
segmenlatien accuracy with a DSC of up (0 92% in a training data set of
malignant glivmas which was repreduced in the BRATS 2013 challenge
datasel with a DSC of 88% outperforming compeling models [817.

4.3, Adaption of treatrent to individual patiers

Treatment adaplion constitutes the slandard of care loday and most
advanced treatment machines offer online CT or MR-imaging. An
“adaplive segpmentation system” could use radiomics classifiers for
lumor identification, as well as for measurement of intra-leeatment
lumer changes for direct therapy adaplion. As a conseguence, lumor
subvolumes that do ool respond 1o therapy could be identified as an
intra-ireatment BTV and direcily ireated with a sequential dose esca-
lation (boast). This concepl corresponds 1o computer aided detection
{CAD) methads that have been applied w0 medicine since the 1980 and
which constitule the basis for today's radiomic studies [82]. Such an
“adaptive radictherapy” tailoring the RT concept o the individual pa-
tient dependent on intrinsic tlumor properties would be ene of the im-
plementations of “personalived medicine” in radiation oncolegy [83].

Mowadays, the most benefil of adaplive radiotherapy is present for
tumors changing geometry rapidly during the course of treatment, e.g.
head and neck lumors, lung cancer, or sarcomas; in some cases, not anly
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tumor response bul alse physiological changes of the patienls, eg.
weight loss, can have significant impact on the treatment plan [84].
Following this novel concepl, prognostic relevant spatial patierns ob-
tained from intra-ireatment CT, MRI or PET imaging studies could be
used as the basis for adaption of RT concepts. For example, changes of
radiomic features on intra-therapeutic diagnostic CTs oblained weekly
during RT had progoostic relevance in NSCLC patients [47]. Early data
showed thal radiomics can also be meaningfully applied to image-gui-
dance CTs, which might be an allernative for the adaptive radiotherapy
workflow [85]. With online MB-imaging, which is now available in
some centers, the full benefil of radiomics can be vsed doe (o betler soft
tissue resolulion, funclional imaging, “online imaging capabilities” and
the lack of addilional radiation dose by adding MREI [86]. In an ex-
ploratory analysis of intra-therapeutic diagnostic dynamic coentrast
cnhanced MRIs of head and neck squamous cell carcinomas a RT-de-
pendenti change was shown [87]. In a comparable approach, histogram
featires of ADC maps of intra-therapeutic MRS showed prognostic re-
levanee in an univariate cox regression [88]. Intra-therapeutic therapy
riesponse assessment via PET imaging constilutes a further spuree for
treatment individualization. For instance, FDG PET stodies oblained in
the second week of RT of MSCLC patients showed prognostic relevance
[48]. In neuronal malignancies static or dynamic metabolic tumor ac-
tivity oblained from aming acid PET imaging could be used for a co-
herent approach [55,89 90].

4.4, Radiv-oncorics: temor and normal tissoe dose response

Beside pre-therapeutic prognostic assessment, radiomics has the
polential to become a powerful toel in radiation oncology by predicling
not anly wumor response, but alse RT-related toxicilies to the normal
tissue. To describe this radiation encelogy-specific feld the lerm

“Radio-Oncomics” has been proposed [11].

Predicting of RT-related tumor response has been investigated in
several arlicles. In patients with NSCLC; changes in radiomics feature
valies oblained from CBCTs alengside RT had prognostic relevance
[91]. In a different approach with bladder cancer patients, a DL madel
and feature extraclion-based models were applied to determine bladder
carcinoma response o chemotberapy on post-therapeutic CT studies,
achieving similar results as experl physician ratings [92]. For rectal
cancer, a recently published MRI-based radiomic classifier was able 1o
predict pathologic complete response {(pCR) o necadjuvant BT with
excellent performance [45]. Following current guidelines, BT is fol-
lowed by reclal resection. Patients with pCR, however, have a superior
prognesis even when surgery is omitted [93]. Radiomics could identify
these patients thal would profit from an organ-preserving RT-only ap-
proach.

Avoidance of normal Lissue toxicily constilules an important issue in
treatment plan oplimization. For the prediction of such effecls, the
Mormal Tissue Complication Frobability (NTCIF) has been introduced as
a funciion of the irradiaied volume and the delivered dose [94].
Radiomics may add a forther factor Lo the equation by quantifying
patient individual tigsue properties. Multiple studies did show the po-
tential of radiomics o predict unwanled effects lo normal Lissue. A
study by Cunliffe et al. analyeed CT-based textural and intensily fea-
tures from randomly selecled regions of inlerest of the lung of pre- and
past-RT CT scans and correlated this infermation radiation dose maps,
as well as the development of radiation pneomonitis. The resolis
identified 12 independent features that correlated significantly with the
development of pneumonitis [95]. For breast cancer, Chen et al. ob-
servied an increase of mean inlensily primarily in the inoer parts of the
breast, which correlated with breast pain [968]. For head and neck tu-
maors, parolid gland velume reduction has been shewn 1o correlate with
xerostomia [97]. Analysis of pre-therapewtic CT-based texture featores
recently showed sipnificant correlation with parotid shrinkage and di-
rect correlations with resolving xerostomia and sticky saliva [98,99].
Predictive models for both side effects were significantly improved by
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adding pre-therapeotic lextore information. In a recent study, a CT-
based radiomics classifier achieved an accuracy of 0.70 in predicling
sensorineural bearing loss of RT of head and neck carcinemas [100].
These studies indicate the polential of applying radiomics lo Loxicity
prediclien.

4.5, Improving diogrestics

Follow-up in radiooncology may be enhanced by quantitative ima-
ging information. Following radiation therapy of GEM, radialion ne-
crosis and pseudoprogression constitute clinically important differential
diagnoses o GEM recurrence. Currently, 18F-FET-PET is used in clin-
iral practice for differentiation. Texture fealures may further improve
diagnesiic performance. Kebir el al. could demonstrate the polential of
differentiating  pseudoprogression from
pedorming the maximum lumor-to-braip-ratio (TBR) in a small pilol
study [101]. Lohman and colleagues could show thal diagnostic aceu-
racy of delineating radiation necrosis from lumaor progression increased

lumor  recurrence  oul-

after adding static textural features or dynamic time activity corve data
Lo the TBR [102]. Recently, Prasanna et al. introduced a novel radio-
mics feature termed “Co-oocurrence of Local Anisotrepic Gradient Or-
The proposed featore applied to MRI data showed high
accuracy in classifying necrosis from  recurrence,
common quantitative imaging features, such as Haralick or Gabor filters
[103]. Recently, Zhang et al. ereated a moltiparameiric ME-based ML
radiomics classifier (o differentiate necrosis from recurrence of brain
metasiases after radiosurgery with an AUC of 0.72 [104]. Similarly, a
CT-based classifier outperformed six physicians that were blinded o the
culcome detecting lecal lung cancer recurrences afler stereolactic ra-
diatien therapy in a matched analyses of 45 patients. To conclude, these
studies underlined the fundamental potential of radiomics as a novel
ool 1o improve patient care [75].

ientations™
outperforming

4.6, Stratification in prospective Irials

To advance radiomics to the next level, prospective clinical trials are
crucial. By definition of relevant parameters inside of the radiomics
workflow, the full potential could e evaluated.

[n fulure prospective trials, the radiomic prognostic classifier could
e vsed as a basis for pre-therapeutic patient selection to distinct pa-
tient cohorts. Moreover, prospective validation of novel radiomics ap-
plications, such as radiomics-guided targel definition, dose adapiations
or diagnoslic improvements wouold pave the way for their clinical
Lranslation.

5. Challenges for the medical physicist

The progress in medical imaging has profoundly pushed the devel-
opment of precision radiotherapy-techniques, such as 3D CRT, IMRT,
IGET, stereclactic radiotherapy (SRT), brachytherapy/interventional
radiotherapy (IRT), and particle beam therapy. Muoltimodal imaging
lurned ot o be the most significant advancement achieving an in-
dividualized lreatment oplimization [105]. The continocusly im-
proving imaging methods have enabled an even beller visualisalion of
the patient analomy, including the localisation, characier, extent and
malecular profile of the wmoer and the organs at risk. With the me-
chanical integration of imaging unils inte the treatmenl unit, e.g.
conebeam-CT (CBCT) attached o the linac gantry, robot-controlled
imagers mounted atl the treaiment couch, or most recently combined
MEB-linac systems, the concepl of direct IGRT has been introduoced
[106]. The adaption of patient set-up with respect o physical, analo-
miral and physiplogical changes for each treatment fraction has become
possible. However, so far conventional image analysis in radiotherapy
has been limited o few observables like contours, intensity maps, dose
matrices and hislograms. [1is the new era of ‘Big Data’, cheap computer
power and sophisticated mathematical tools, which — far beyond
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traditional limils — now allow te model myriads of varialiles, and image
and texture fealures simullaneously 1o establish patterns in data [107].
Several clinical studies (see seclion “impacl of radiomics on radio-
oncolegy™) demonstrated the predictive potential of these patierns
when assecialed with the clinical outeame.

Apainst this background, the intreduction of big data technologies
in radiponcology, which comprise image, physical, clinical and biolo-
wical data, generates a variely of new tasks in clinical praclice and re-
search, challenging the medical physicist as a member of an inter-
disciplinary radiooncology team.

5.1. Treatment planning

In the radiomics era, the lechoiques of multimodalily imaging,
currently wsed for pre-lrealment diagnostics and treatment planning Lo
define a computerized 30 patient model, may be supplemented by
novel tools based oo quantilative imaging, e.g segmentation of struc-
tures, determination of biological markers and exiraction of relevant
imaging features. As emphasized already over a decade ago [108], the
IMRT-capability of modern linacs allows Lo tailor a non-uniform dose
distribution Lo the biolegical heterageneous lumor (dose painling™) and
hence o complement the ICRU concept of volumes by a “Biological
Target Volume (BTY) [109]. Radiomics lechnigues with ils potential 1o
map genetic signatures of normal and umer lssoe on imaging dala
may be used 1o more precisely deseribe such a BTY as an RTV. The
procedure of defining volumes will be extended beyond just drawing
contours en different image daia sets. Yel, open questions refer (o the
identification of relevant radigmics biomarkers capluring limaor and
narmal Lissue geno- and phenotypic characleristies. Several studies are
dealing with the prediclion of radiation loxicily effects by associaling
radiomics features with 3D-dose  distribution [110]. When in-
carporating the large amount of radiomics data into treatment planning
soflware tools il is necessary Lo effectively process the various image
data sels. As soon as such approaches become part of the standard
clinical workflow in radiation eocology, the traditional role of the
medical physicist in qualily assurance of imaging maodalities vsed for
treatmenl planning needs to be broadened 1o include radiomics mod-
alities. This might be quite challenging while radiomics algorithms and
cancepls are still developing, bul the medical physicist muost ensure that
all inpul data 1o treatment planning fulfills the required standards for
overall patient safety. This includes alse the integration of radicmics
modalities into the overall end-lo-end tests in radiation therapy. Other
tasks refer to the influence of the variows uncertainties associated with
respect to the definition of lwmor boundardes and its biological sub-
volumes due Lo characteristics and limilations of each oncological
imaging technolegy. Correlation of the 30-dose matrix with the various
individual or fused image data sels represents another problem, in
particular when considering the impact of organ moetion artefacts and
day-to-day variations in patient selting-up and potential changes in the
bivlegical subvolumes during the course of the trealment. Associating
dose-volume-time metrics with radiomics signatures 1o explore ils
predictive polential on clinical outcome (TCP and NTCP) requires basic
and clinical research. Here, it is primarily the medical physicist who
understands the limilations and potential pitfalls when correlating the
3D dose matrix with radiomics data. For example, the 30 dose matrix
depends on the employed dose caleulation algorithm and the resolution
of the calculation grid, and standardization of such parameters can be
guite difficult in multi-centric trials which aim al evaluating the clinical
impact of radiomics features for either treatment planning or culceme
modeling.

5.2, Treatrent delivery
In order o track shifts in patient positioning and tumor lecation

intra- and interfractional verification of the treatment delivery by
means of integraled or on-board imaging devices is geing 1o be standard
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in precision radiotherapy. These muoltiple imaging dala sels acquired for
IGET can be vsed (o gquantify deviations from the lreatment plan.
Imaging featvures and biomarkers can be extracted from the sequence of
[GHT-image data sels and associated with pre-treatment and planning
image data Lo assess lime dependent radiation respense effects
throughoul the treatment course. [n this context, the Delta-Radiomics
concept could be used 1o gquantify treatment-dependent tumor changes
[47,48]. Recently, a study on CECT-radiomics demonsirated the po-
tential of these image data for survival prediction [91]. Recently, an
exploratory sludy first demonsirated the prognostic potential of radio-
mics on the basis of electronie portal imaging device images [111].
Furthermore, radiomics models based on [IGRT-imaging dala may sup-
port the medical decision on a response dependent adaption during the
lreatment course.

5.3, Dose disiribution

Spatial and temporal dose distribulion (e.g. tme-dependent effects
due 1o doge fractionation or dose rale (eg. brachylherapy)), the aclu-
ally delivered and aceumulated dose distribulion, dose-volume re-
lationship (e.g. dose-voluome-histogram (DVH)), and the radialion type
are the most significant physical determinants of radiation response and
clinical outcome. When combining these physical guantities with pre-
dictive radiomic parameters from diagnostic images and IGET imaging
data, prediction of treatment response and radiosensitivity of the var-
ious types of normal tissue coold be improved. However, most critical is
the impact of uncertainties of the dosimetry data on the radiomics
madels which limits the clinical application of such a comprehensive
approach.

6. Conclusion

Introduction of computerized medical imaging technologies lurned
oul 1o be a milesione on the way Lo translating the approach of per-
sonalized medicine in radiotherapy. The various imaging technigues
available today initiated novel treatment metheds (IMRT, IGRT,
breathing adapled radio therapy (BARTY), individvalized treatment
planning and stimulated innovations in equipment technoloegy up to the
recent advent of MR-linac. Along that path, guite ofien it was the
medical physicist whao significantly contribuled to this advancement in
radiotherapy. Nowadays, we are again facing a new era where Al-based
quantitative imaging lechnologies have started to manifest in radio-
oncology. A demonstrated in various clinical studies, this new field of
big data, providing powerful locls for analyzing large collections of
information, may cffer opporiunilies to support clinical decisions on
treatment design and adaption, Lo improve predictions of patients’
treatment outceme and (o enable a betler stratification of patient co-
horts in clinical trials. Furthermore, association of the large data set of
diagnostic and therapy-related digital information with wmor and
normal lissue geno- and phenolyping data may stimulate research in
clinical and basgic science in radivoncology. In order lo continue in
playing an important rele in the radiooocology leam, the medical
physicist needs 1o catch up with the rapid development of this field of
Al-lechniques increasingly being applied in radiconcology. With the
increasing importance of imaging in radiotherapy the majorily of
medical physicists are already rather familiar at least with the funda-
menlals of imaging technology. However, il might be worthwhile 1o
consider adapting the education curricula 1o include more radiomics
related topics. National and inlernational associations for medical
physics should cope with this trend and launch initiatives 1o provide
appropriate training in this challenging field of Al Lechnology applied in
all radiation imaging and therapy disciplines, particularly in radio-
cncelogy.
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QUESTOES

(As gquestBes poderdo ser respondidas em portugués, inglés ou espanhol)

The questions of this test were based on the following article:

Radiomics in radiooncology — Challenging the medical physicist
Peeken JC, Bernhofer M, Wiestler B et al. Phys Med. 2018 Apr;48:27-36. doi:
10.1016/j.ejmp.2018.03.012

Please read and write your responses:

1. According to the authors, which are the tasks of a medical physicist when planning a radiation
therapy treatment? (2,0 pts)

2. Also, according to the text, how do you define “radiomics™? (2,0 pts)

3. What authors discussed about image features extraction? (2,0 pts)

4. Briefly, (up to 15 lines) describe the impact of radiomics on radiooncology (2,0 pts)

5. According authors’ view, what are the challenges of the medical physicist for treatment planning?

(2,5 pts)

Gabarito: Prova de Inglés 2019- 10 semestre — Exatas aplicadas a satde -PPG-CM

1. According to the authors, what are the tasks of a medical physicist when planning a radiation therapy treatment?
R. O papel do fisico médico no auxilio do tratamento radioterdpico inclui varias tarefas:

a- garantir a qualidade das imagens médicas;

b- verificar que a dose de radiacdo seja a mais adequada possivel ao plano de tratamento proposto;

c- analisar as imagens médicas geradas para o planejamento terapéutico de maneira individualizada e direcionada as necessidades

de cada paciente.

2. Also, according to the text, how do you define “radiomics”?
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R. No texto, “radiomics”é definida como a técnica que extrai atributos de textura das imagens médicas, através de andlises

guantitativas e, posteriormente, estas informacgdes sdo inseridas em modelos matematicos preditores da resposta terapéutica.

3. What authors have discussed about image features extraction?

R. Os autores discutem como atributos de textura, avaliados quantitativamente, pode contribuir para o planejamento terapéutico
e melhor selecao de pacientes. Neste contexto, sao discutidos como otimizar a abordagem da analise textural, j& que o niumero de
atributos utilizaveis é extremamente elevado. Os autores sugerem uso de filtros de imagem, por exemplo, bem como a

consolidacdo de alguns atributos como os melhores, a partir da andlise de uma grande quantidade de dados.

4. Briefly, (up to 15 lines), describe the impacto f radiomics on radiooncology?

R. A radiémica tem sido pesquisada para que o planejamento terapéutico de um determinado individuo seja feito levando em
conta suas caracteristicas particulares, o que é conhecido como medicina personalizada. Isto se refletiria em diferentes niveis de
atuacdo”melhor definicdo de dose terapéutica, melhoria nos diagndsticos das complicagdes associadas a radioterapia e até

estratificacdo de risco para adequacdo de inser¢cdo em ensaios clinicos randomizados.

Por exemplo, a radibmica pode ser utilizada para tentar predizer a dose ideal para o tratamento de uma neoplasia,
especificamente para aquele paciente, que tem um tumor com caracteristicas avaliadas pela textura. Outro uso, por exemplo,
seria a predicdo de toxicidade relacionada a radioterapia, nos tecidos normais, adjacente a lesdo a ser tratada, de novo a partir de

informacdes especificas dos atributos de textura.

5. According to “authors view”, what are the challenges of the medical physicist for treatment planning?

R. Os autores descrevem que o fisico médico deve se manter atualizado em relagdo as técncias terapéuticas mais modernas,
como IMRT, IGRT, SRT e, além disso, das possiveis interagdes entre a radidmica e as técnicas de radioterapia. Além disto, deve
estar atento a participacdao em discussGes multidisciplinares, que objetivam otimizar o tratamento e, no futuro, envolverao o uso
de dados derivados de grande quantidade de pacientes (“big data”) e incorporagdo de modernas tecnologias oriundas do uso

destes dados e da radiogendmica.
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